管理学 点击: 2013-06-06
七年级上册数学课时作业
新人教版七年级数学(上)知识点归纳
第一章 有理数
1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形 式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。 由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。 加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。 表达式:(a+b)+c=a+(b+c)
9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
11、倒数:1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。a中,a叫做底数(base number),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的n
任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。
第二章 整式的加减
1、单项式:几个数字或字母的乘积叫做单项式.单独一个数或一个字母也是单项式.
2、系数:单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式:几个单项式的和叫做多项式.
5、多项式的项:在多项式中,每个单项式叫做多项式的项.
6、常数项:多项式中,不含字母的项叫做常数项.
7、多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数.
8、升(降)幂排列:把一个多项式,按某一个字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列.
9、整式:单项式和多项式统称整式。
10、同类项:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.
11、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
12、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
13、整式的加减:整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号; 2.合并同类项.{38分钟课时作业本数学}.
第三章 一元一次方程
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.{38分钟课时作业本数学}.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. n
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表
示为:如果a=b,那么a±c=b±c
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用
ab式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么= cc
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、 去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax = b (a≠0)形式)
b5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解 a
六、用方程思想解决实际问题的一般步骤
1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2、设:设未知数(可分直接设法,间接设法)
3、找:找出题目中的等量关系
4、 列:根据等量关系列方程.
5、 解:解出所列方程.
6、 检:检验所求的解是否符合题意.
七、有关常用应用类型题及各量之间的关系
1、 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增
长率„„”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现.
2、 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为(其中a、cb、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
6、行程问题:
(1)行程问题中的三个基本量及其关系: 路程=速度×时间.
(2)基本类型有:① 相遇问题;
② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率
8、储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
第四章 图形认识初步
一、多姿多彩的图形
1、从实物中抽象出的各种图形统称为几何图形。
点、线、面、体:(1)点动成线,线动成面,面动成体
(2)体体相交成面,面面相交成线,线线相交成点
二、直线、射线、线段
1、两点确定一条直线
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,
这个公共点叫做它们的交点。
3、两点之间,线段最短。
4、连接两点间的线段的长度,叫做这两点的距离。
三、角
1、有且只有一个角
2、把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫 做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。
3.、角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″ 4、角的平分线:A. 从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 B.角平分线上的一点到角的两边距离相等。
四、线段、射线和直线的联系与区别
联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.区别:
一年级上册数学课时作业
一年级上册数学课时作业
姓名:
10以内数的认识
1、继续认识35个字。
2
3、填空
2里面有( )个一,2个一就是( )。
等级: 月日
10以内数的认识
1、继续认识35个字。
2{38分钟课时作业本数学}.
3、填空
3里面有( )个一,3个一就是( )。 4里面有( )个一,4个一就是( )。
等级: 月日
认识5和6
1、在田字格里各写一行5和6.
2、5里面有( )个一,5个一就是( )。 6里面有( )个一,6个一就是( )。
等级: 月日
10以内数的认识
1
2、填空
7里面有( )个一,8个一就是( ),9里面有( )个一。 3个一和2个一合起来是( )个一,就是( )。 5个一和4个一合起来是( )个( ),就是( )。
等级:
10以内数的认识
1、在水果下面画√,蔬菜下面画○。{38分钟课时作业本数学}.
等级: 月日
2、天上飞的画△,地上跑的画○
.
等级:
月日
10以内的认识
1、把同类圈起来。
2、把每行中不同的用○画一画。
3、分一分。
九年级数学课时作业本
九年级数学课时作业本
一、填空题
1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大.
2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.
3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天.
4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.
二、选择题
5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )
A. B. C. D.
6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )
A.8000条 B.4000条 C.2000条 D.1000条
三、解答题
7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n 100 150 200 500 800 1000
摸到白球的次数m 58 96 116 295 484 601
摸到白球的频率
0.58 0.64 0.58 0.59 0.605 0.601
(1)请估计:当n很大时,摸到白球的频率将会接近______;
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.
8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.
综合、运用、诊断
一、填空题
9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.
10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.
二、解答题
11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.
12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下: 掷子次数 50次 150次 300次
石子落在⊙O内
(含⊙O上)的次数m 14 43 93
石子落在图形内的次数n 19 85 186
你能否求出封闭图形ABC的面积?试试看.
13.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?
拓广、探究、思考
14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.
15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:
(1)该国参战部队有220个班建制;
(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;
(3)敌国的士气不振.
因此,他向本国发回消息:“敌国已基本失去战斗力”.
你认为这名间谍的消息正确吗?
八上数学课时作业本
八上数学课时作业本
不积跬步,无以至千里”,学习是一个日积月累的过程。在日常的课堂教学中,只有及时消化新授课知识,把握每课时的重难点,才能扎扎实实地夯实双基,才能逐步提升学生的综合运用能力和创新能力。而精当的课时练习正是实现这一目标的重要途径。为此,我们精心策划编写了《课时作业本》系列丛书,本书与其他同类书相比,具有以下几个鲜明的特点:
1.全新的课时理念。本书作为课时练习类的配套教辅,我们首先注重了课时设置的全面性,即在设置新授课时及练习课时的基础上,增设了期末复习课时,使课时设置与教学进程保持一致;在课时划分方面,我们立足于教学参考书上的一般要求,同时又结合了教学一线的实际情况,确保课时划分与教学实际相适应;每课时的作业编设则尽量与教材及课堂教学融为一体,力求使每一个作业都是对教材相关内容的完美诠释和对课堂教学的有力补充。
2.精准的作业设计。本书每个作业均设有“课堂作业”、“课后作业”两个栏目,每个栏目均立足于把握新授课的特点,充分考虑学生的认知规律。在题量的设置上尽量与课堂教学及课后巩固的实际情况相适应,使每个栏目的功能落到实处;在题型与难易程度方面则确保与教材呈现的相关内容对应,不随意拔高难度;在编设题目时,则遵循原创与经典相结合的原则,充分体现其新颖性、适用性,力求使每道题目都有其独特的价值,以起到事半功倍的练习效果。
3.完整的体例结构。本书不仅设有全面系统的课时作业,在每单元结束时,还配有单元自测卷及期中、期末时的自测卷,以帮助学生查漏补缺、自我提升。书末附设了较为详尽的参考答案.对较难的题目均列出解答过程,或予以必要的提示,以便于学生自查自纠,从而实现了平时练习与阶段性测试的有机结合,构成了一个科学完整的学习检测体系。
“工欲善其事,必先利其器。”我们期望,通过各位特、高级教师的精心编写,通过我们的反复审校,本书能成为同学们平时学习的“良师益友”“善事之器”,使广大师生用得顺心、省心、舒心。但限于时间及水平,本书难免会存在一些疏漏之处,恳请广大读者朋友们不吝指正,以便我们再版时修订。
目录:
第一章 轴对称图形
第1课时 轴对称与轴对称图形
第2课时 轴对称的性质(1)
第3课时 轴对称的性质(2)
第4课时 设计轴对称图案
第5课时 线段、角的轴对称性(1)
第6课时 线段、角的轴对称性(2)
第7课时 等腰三角.形的轴对称性(1)
第8课时 等腰三角形的轴对称性(2)
第9课时 等腰三角形的轴对称性(3)
第10课时 等腰梯形的轴对称性(1)
第11课时 等腰梯形的轴对称性(2)
第一章单元自测卷{38分钟课时作业本数学}.
第二章 勾股定理与平方根
第1课时 勾股定理(1)
第2课时 勾股定理(2)
第3课时 神秘的数组
第4课时 平方根(1)
第5课时 平方根(2)
第6课时 立方根
第7课时 实数(1)
第8课时 实数(2)
第9课时 近似数与有效数字
第10课时 勾股定理的应用(1) 第11课时 勾股定理的应用(2)
第二章单元自测卷
第三章 中心对称图形(一)
第1课时 图形的旋转
第2课时 中心对称与中心对称图形(1) 第3课时 中心对称与中心对称图形(2) 第4课时 设计中心对称图案
第5课时 平行四边形(1)
第6课时 平行四边形(2)
第7课时 平行四边形(3)
第8课时 矩形、菱形、正方形(1) 第9课时 矩形、菱形、正方形(2) ……
期中自测卷
第四章 数量、位置的变化
第五章 一次函数
第六章 数据的集中程度
数学九上课时作业本第13课时
第13课时 正多边形与圆(1)
知识梳理
1. 的多边形叫做正多边形。
2.一般地,用量角器把一个圆n(n≥3)等分,依次连接各等分点所得的多边形是这个圆 的 正多边形。这个圆是这个正多边形的 圆,正多边形
的 圆的圆心叫做正多边形的中心, 圆的半径叫做正多边形的半径。 课堂作业
1.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 。 2.如图,过正五边形ABCDE的顶点A作直线L∥BE,则∠1的度数为 ( ) A.30° B.36° C.38° D.45°
A
E
C
第2题
D
3.若圆的内接正六边形的边长为4cm,则该圆的半径为 ( ) A.4cm B.42cm C. 4 cm D.8cm
4.如图,在正五边形ABCDE中,点F、G分别是BC、CD的中点,AF与BG相交于点H。 (1)求证:△ABF≌△BCG;
(2)求∠AHG的度数。
D
F
第4题
课后作业
5.如图,正六边形ABCDEF的边长为2cm,P为这个正六边形内部的一个动点,则点P到这个正六边形各边的距离之和为 cm
B ① ②
第5题
第6题
6.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①所示。用n个全等的正六边形按这种方式拼接,如图②所示,若围成一圈后中间也形成一个正多边形,则n的值为 .
7.如图,正六边形螺帽的边长为2cm,这个扳手的开口a的值为 ( ) A. 2cm B.3cm C.
23
cm D.1cm 3
8.为增加绿化面积,某小区将原来的正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长均为a,则阴影部分的面积为 ( ) A. 2a2 B. 3a2
第8题
9.(1)如图①,△ABC为正三角形,点M、N分别在边BC、CA上,且BM=CN,BN与AM相交于点Q,试求∠BQM的度数。
(2)如果将(1)中的正三角形改为正方形ABCD(如图②),点M、N分别在边BC、CD上,且BM=CN,BN与AM相交于点Q,那么∠BQM的度数又为什么呢?并说明理由; (3)如果将(1)中的正三角形改为正五边形、正六边形、…、正n边形(如图③),其余A
A
D
N
N
Q
B
B
M
C
QM
C
②
①
D M
M ③ C
B
D
10.如图,在等边三角形ABC中,E、F、G、H、L、K分别是各边的三等分点,试说明六边形EFGHLK是正六边形。
A
E
K
F
L
BGH
C
第10题
11.已知多边形ABDEC是由边长为2的等边三角形ABC和边长为2的正方形BDFC组成的,一圆A、D、E三点,求该圆的半径。
A
B
C
D
第11题
E
答案: 知识梳理
1.各边相等、各角也相等 2.内接 外接 外接 外接 课堂作业
1.6 2.B 3. A 4.(1)∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD. ∴F、G分别是BC、CD的中点。∴BF=CG..在△ABF和△BCG中,∵AB=BC, ∠ABC=∠BCD,BF=CG, ∴△ABF≌△BCG
(2)由(1)知△ABF≌△BCG,∴∠FAB=∠GBC。∴∠AHG=∠FAB+∠ABH=∠GBC+∠ABH=∠ABC。∵正五边形的内角为108°,∴∠AHG=108° 课后作业
5.63 6.6 7.A 8.A
9.(1) ∠BQM=60° (2)∠BQM=90° 理由:∵四边形ABCD为正方形,∴∠ABC=∠BCD=90°,AB=BC.在△ABM和△BCN中,∵AB=BC,∠ABM=∠BCN,BM=CN, ∴△ABM≌△BCN。∴∠BAQ=∠QBM。∴∠QBM=∠BAQ+∠ABQ=∠QBM+∠ABQ=90°
360
(3)108° 120° 180°- n
10. 点拨:先说明EF=FG=GH=HL=LK=KE,再说明∠KEF=∠EFG=∠FGH=∠GHL=∠HLK=∠LKE=120°。
11.如图,将正方形BDEC上的等边三角形ABC向下移得等边三角形ODE,其底边与DE重合。∵A、B、C的对应点是O、D、E,∴OD=AB,OE=AC,AO=BD. ∵等边三角形ABC和正方形和正方形BDEC的边长都是2,∴AB=BD=AC=2。∴OD=OA=OE=2. ∵A、D、E三点不在同一条直线上,∴OD=OA=OE=2. ∵A、D、E三点不在同一条直线上,∴A、D、E三点的距离相等,∴点O为圆心,OA为半径。∴该圆的半径为2
A
B
O
C
D
第11题
E
初二上册数学课堂作业本(A,B)本答案
初二上册数学课堂作业本(A,B)本答案