8年级上册数学作业本答案

管理学  点击:   2012-12-26

8年级上册数学作业本答案篇一

人教版八年级上数学练习册答案

8年级上册数学作业答案篇二

八年级上册数学作业本答案

八年级上作业本同步练答案(人教版)跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。下面是小编整理的八年级上册数学作业本答案,供大家参考。八年级上数学作业本[人教版]答案,浙教版也可以用,

参考答案第1章 平行线

【1.1】1.4,4,2,5 2.2,1,3,BC 3.C4.2与3相等,3与5互补.理由略5.同位角是BFD 和DEC,同旁内角是AFD 和AED6.各4对.同位角有B 与GAD,B 与DCF,D 与HAB,D 与ECB;内错角有B 与BCE,B 与HAB,D 与GAD,D 与DCF;同旁内角有B 与DAB,B 与DCB,D 与DAB,D与DCB

【1.2(1)】1.(1)AB,CD (2)3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是ADE 和ABC 的角平分线,得ADG=12ADE,ABF= 12 ABC,则ADG=ABF,所以由同位角相等,两直线平行,得DG∥BF

【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为1,2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由BCD=120,CDE=30,可得DEC=90.所以DEC+ABC=180,AB∥DE (同旁内角互补,两直线平行)5.(1)180;AD;BC(2)AB 与CD 不一定平行.若加上条件ACD=90,或1+D=90等都可说明AB∥CD6.AB∥CD.由已知可得ABD+BDC=180 7.略

【1.3(1)】1.D 2.1=70,2=70,3=1103.3=4.理由如下:由1=2,得DE∥BC(同位角相等,两直线平行), 3=4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.=44. ∵ AB∥CD, =6.(1)B=D (2)由2x+15=65-3x解得x=10,所以1=35

【1.3(2)】1.(1)两直线平行,同位角相等 (2)两直线平行,内错角相等2.(1) (2) 3.(1)DAB (2)BCD4.∵ 1=2=100, m∥n(内错角相等,

两直线平行). 4=3=120(两直线平行,同位角相等)5.能.举例略6.APC=PAB+PCD.理由:连结AC,则BAC+ACD=180. PAB+PCD=180-CAP-ACP.10.(1)BE∥DC.理由是ABE=B=90=D又APC=180-CAP-ACP, APC=PAB+PCD(2)由BE∥DC,得BEB=C=130.

【1.4】 AEB=AEB=12BEB=651.2第2章 特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m

【2.1】3.15cm 4.略5.由m∥n,ABn,CDn,知AB=CD,ABE=CDF=90.1.B∵ AE∥CF, AEB=CFD. △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;ADC;DAC,C;AD,DC;AC AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM l5.如图,答案不唯一,图中点C1,C2,C3均可2于 M,BN l3于 N,则 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=15cm7.AP 平分BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)4 (2)3 (3)1 BAP=CAP(第5题)3.(1)B,两直线平行,同位角相等

【2.2】(2)5,内错角相等,两直线平行(3)BCD,CD,同旁内角互补,两直线平行1.(1)70,70 (2)100,40 2.3,90,50 3.略4.(1)90 (2)604.B=40,C=40,BAD=50,CAD=50 5.40或705.AB∥CD.理由:如图,由1+3=180,得6.BD=CE.理由:由AB=AC,得ABC=ACB.(第又∵3=72=25题) BDC=CEB=90,BC=CB, △BDC≌△CEB(AAS). BD=CE6.由AB∥DF,得1=D=115.由BC∥DE,得1+B=180.(本题也可用面积法求解) B=657.A+D=180,C+D=180,B=D

【2.3】8.不正确,画图略1.70,等腰 2.3 3.70或409.因为EBC=1=2,所以DE∥BC.所以AED=C=704.△BCD 是等腰三角形.理由如下:由BD,CD 分别是ABC,ACB 的平50 分线,得DBC=DCB.则DB=DC{8年级上册数学作业本答案}.

【2.5(1)】5.DBE=DEB,DE=DB=56.△DBF 和△EFC 都是

等腰三角形.理由如下:1.C 2.45,45,6 3.5∵ △ADE 和△FDE 重合, ADE=FDE.4.∵ B+C=90, △ABC 是直角三角形∵ DE∥BC, ADE=B,FDE=DFB,5.由已知可求得C=72,DBC=18 B=DFB. DB=DF,即△DBF 是等腰三角形.6.DEDF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形 DE=DF.ECD=45, EDC=45.同理,CDF=45,7.(1)把120分成20和100 (2)把60分成20和40 EDF=90,即DEDF

【2.4】【2.5(2)】1.(1)3 (2)51.D 2.33 3.A=65,B=25 4.DE=DF=3m2.△ADE 是等边三角形.理由如下: ∵ △ABC 是等边三角形, A=B=C=60. ∵ DE∥BC, ADE=B=60,5.由BE=12AC,DE=12AC,得BE=DE 6.135mAED=C=60,即ADE=AED=A=603.略【2.6(1)】4.(1)AB∥CD.因为BAC=ACD=601.(1)5 (2)12 (3)槡5 2.A=225(2)ACBD.因为AB=AD,BAC=DAC5.由AP=PQ=AQ,得△APQ 是等边三角形.则APQ=60.而 BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, B=BAP=30.同理可得C=QAC=30.4. 槡2 2cm (或槡8cm) 5.169cm2 6.18米 BAC=1207.S梯形BCCD=1(CD+BC)BD=1(a+b)2,6.△DEF 是等边三角形.理由如下:由 ABE+ FCB= ABC=60,22ABE=BCF,得FBC+BCF=60. DFE=60.同理可S梯形BCCD=S△ACD+S△ACC+S△ABC=ab+12c2.得EDF=60, △DEF 是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能 (2)能 2.是直角三角形,因为满足m2=p2+n2 3.符合4.BAC,ADB,ADC 都是直角(第7题)5.连结BD,则ADB=45,BD= 槡32. BD2+CD2=BC2, BDC=90. ADC=135第3章 直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形) 2.8,12,6,长方形1.BC=EF 或AC=DF 或A=D 或B=E 2.略3.直五棱柱,7,10,3 4.B3.全等,依据是HL5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,AEB+DEC=90.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形 AEC=90,即△AEC 是等腰直角三角形状、面积完全相同的长方形5.∵ ADB=BCA=Rt,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm Rt△ABD≌Rt△BAC(HL). CAB=DBA,7. 正多面体 顶点数(V) 面数(F) 棱数(E) V+F-E OA=OB正四面体6.DF4462BC.理由如下:由已知可得 Rt△BCE≌Rt△DAE,正六面体 B=D,从而D+C=B+C=9086122正八面体68122复习题正十二面体2012302正二十面体1.A1220302 2.D 3.22 4.13或 槡119 5.B 6.等腰符合欧拉公式7.72,72,4 8.槡7 9.6410.∵ AD=AE, ADE=AED, ADB=AEC.【3.2】又∵ BD=EC, △ABD≌△ACE. AB=AC1.C11.48 2.直四棱柱 3.6,7 12.B13.连结BC. ∵ AB=AC, ABC=ACB.4.(1)2条 (2)槡5 5.C又∵ ABD=ACD, DBC=DCB. BD=CD6.表面展开图如图.它的侧面积是14.25(15+2+2.5)3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB, ACB=DBC,

从而OB=OC16.AB=10cm.AED=C=Rt,AE=AC=6cm,DE=CD.18+121522=21(cm2)可得BE=4cm.在 Rt△BED 中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,① 2.C52 3.圆柱圆锥球4.b 5.B 6.B 7.示意图如图从正面看 长方形三角形圆8.D 9.(1)面F (2)面C (3)面A从侧面看 长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B 5.示意图如图 6.示意图如图11.如图(第11题)(第7题)第4章 样本与数据分析初步【4.1】 (第1.抽样调查5题)(第6题) 2.D 3.B4.(1)抽样调查 (2)普查 (3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等 2.直三棱柱 3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1530534=27(cm2) 5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】 1.2 2.2,不正确,因为样本容量太小 3.C4.120千瓦时 5.8625题(第5题)(第6题)6.小王得分705+503+80210=66(分).同理,小孙得745分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C 2.15,5,10 3.直三棱柱1.5,4 2.B 3.C 4.中位数是2,众数是1和253 数学 八 年 级 上5.(1)平均身高为161cm12(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是1615cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm 的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm 比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为96年,众数为8年,中位数为85年;乙:平均数为9480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1) x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C 2.B 3.2 4.S2=2 5.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查 2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为144岁,中位数和众数都是14岁 4.槡2平均数中位数众数标准差5.28 6.D 7.A 8.A 9.10,32004年(万元)5126268.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)65303011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角

度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是75,乙的平均数、中位数、投中9个以上次数分1.方差或标准差 2.400 3.(1)18千克 (2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54 甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥ 2.C第5章 一元一次不等式3.(1)x>3 (2)x<-3 (3)无数;如x=9,x 槡= 3,x=-3等8【5.1】(4)x 槡- 24.(1)x1 (2)x <4 5.x>2.最小整数解为31.(1)> (2)> (3)< (4)< (5)2.(1)x+2>0 (2)x2-7<5 (3)5+x3x (4)m2+n22mn6.共3组:0,1,2;1,2,3;2,3,4 7.a<-323.(1)< (2)> (3)< (4)> (5)>【5.3(2)】4.1.(1)x0 (2)x<43 (3)x<3(第4题)2.(1)x>2 (2)x<-7 3.(1)x5 (2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165 (2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>302008,解得x>16.所以171.(1) (2) (3) (4) (5)人以上买团体票更便宜2.(1) (2) (3) (4) (5) (6)【5.3(3)】3.(1)x<22,不等式的基本性质2 (2)m-2,不等式的基本性质3(3)x2,不等式的基本性质2 (4)y<-1,不等式的基本性质1.B 2.设能买x支钢笔,则5x324,解得x644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)450,解得x6.所以304.-45x+3>-45y+3 5.a2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x1200,解得x200.所以小红每月至少加4工服装200套506y06x<06y, 45yx<y5.设小颖家这个月用水量为x (m3),则515+2(x-5)15,解得x55 数学 八 年 级 上875.至少为875m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设 该 班 在 这 次 活 动 中 计 划 分 x 组,则3x+105(x-1),{解 得3x+105(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495140-11x7x7.5.即计划分7个组,该班共有学生31人97370,解得x6.设购买 A型x台,B型(10-x)台,则10012x+10(10-x)105,解得6.甲厂每天至少处理垃圾6时0x25.x 可取0,1,2,有三种购买方案:①购 A 型0台,B型10台;7.(1)设购买钢笔x (x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购 A型2台,B型8台3045+6(x-30)>(3045+6x)09,解得x>757.(1)x>2或x<-2 (2)-2x0(2)全部按甲种方式需:3045+610=1410(元);全部按乙种方式需:(3045+640)09=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需3045+61009=1404(元).这种付款方案最省钱1.x<12 2.7cm<x<13cm 3.x2 4.82【5.4(1)】5.x=1,2,3,4 6.0,17.(1)3x-2<-1 (2)y+12x0 (3)2x>-x21.B 2.(1)x>0 (2)x<13 (3)-2x<槡3 (4)无解8.(1)x>73.(1)1x<

8年级上册数学作业本答案篇三

人教版八年级数学练习册答案

《新课程课堂同步练习册·数学(人教版八年级上册)》

参考答案 第十一章 全等三角形

{8年级上册数学作业本答案}.

11.1全等三角形

一、1. C 2. C

二、1.(1)①AB DE ②AC DC ③BC EC

(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE

2. 120 4

三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.

对应边分别是:AO和DO,OB和OC,AC和DB.

2.相等,理由如下:

∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC

3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE —∠BAF 即∠CAF=∠EAB

11.2全等三角形的判定(一)

一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)

3. 2, △ADB≌△DAC,△ABC≌△DCB 4. 24

二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,

{8年级上册数学作业本答案}.

∴△ABE≌△DCG(SSS),∴∠B=∠C

2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,

∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC

又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC

3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2 可得∠ACE=∠FDB

11.2全等三角形的判定(二)

一、1.D 2.C

二、1.OB=OC 2. 95

三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.

2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中, ∴△BAC≌△DAE(SAS)∴BC=DE

3.(1)可添加条件为:BC=EF或BE=CF

(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,

∴△ABC≌△DEF(SAS)

11.2全等三角形的判定(三)

一、1. C 2. C

二、1.AAS 2.(1)SAS (2)ASA 3.(答案不唯一)∠B=∠B1,∠C=∠C1等 三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)

2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF

∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)

3. 提示:用“AAS”和“ASA”均可证明.

11.2全等三角形的判定(四)

一、1.D 2.C

二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不唯一)

3.Rt△ABC,Rt△DCB,AAS,△DOC

三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)

∴∠ACB=∠DBC ∴AC//DB

2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE

∴△ADB≌△CEB(AAS)

3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;

(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.{8年级上册数学作业本答案}.

11.2三角形全等的判定(综合)

一、1.C 2.B 3.D 4.B 5.B

二、1. 80° 2. 2 3. 70° 4. (略)

三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,

在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF

(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC

2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC

∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)

11.3角的平分线的性质

一、1.C 2.D 3.B 4.B 5.B 6.D

二、1. 5 2. ∠BAC的角平分线 3.4cm

三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).

{8年级上册数学作业本答案}.

2. 证明:∵D是BC中点,∴BD=CD.

∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.

在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,{8年级上册数学作业本答案}.

∴AD平分∠BAC

3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE

(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC, ∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°

4. 提示:先运用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.

第十二章 轴对称

12.1轴对称(一)

一、1.A 2.D

二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6

三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.

2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等; AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,

CD与C′D′, BC与B′C′等.

12.1轴对称(二)

一、1.B 2.B 3.C 4.B 5.D

二、1.MB 直线CD 2. 10cm 3. 120°

三、1.(1)作∠AOB的平分线OE; (2)作线段MN的垂直平分线CD,OE与CD交于点P,

点P就是所求作的点.

2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以

∠A=∠E=130°,∠D=∠B=110°,由于五边形内角和为(5-2)×180°=540°, 即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,

所以∠BCD=60°

3. 20提示:利用线段垂直平分线的性质得出BE=AE.

12.2.1作轴对称图形{8年级上册数学作业本答案}.

一、1.A 2.A 3.B

二、1.全等 2.108

三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略

3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图

12.2.2用坐标表示轴对称

一、1.B 2.B 3.A 4.B 5.C

二、1.A(0,2), B(2,2), C(2,0), O(0,0)

2.(4,2) 3. (-2,-3)

三、1. 解:A(-3,0),B(-1,-3),C(4,0),D(-1,3),

点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、

B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图

2.解:∵M,N关于x轴对称, ∴

∴ ∴ba+1=(-1)3+1=0

3.解:A′(2,3),B′(3,1),C′(-1,-2)

12.3.1等腰三角形(一)

一、1.D 2.C

二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°

三、1.证明: ∵∠EAC是△ABC的外角 ∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC ∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C

∴∠2=∠C ∴AD//BC

2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x, 则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中, ∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.

12.3.2等腰三角形(二)

一、1.C 2.C 3.D

二、1.等腰 2. 9 3.等边对等角,等角对等边

8年级上册数学作业本答案篇四

八年级上册数学作业本答案

便宜

8年级上册数学作业本答案篇五

八年级上册数学作业本答案{8年级上册数学作业本答案}.

八年级上册数学作业本答案

8年级上册数学作业本答案篇六

八年级上册数学作业本答案 (1)

便宜

相关文章
推荐内容
上一篇:cv范文
下一篇:5月为主题的活动策划书
Copyright 学习网 版权所有 All Rights Reserved