九年级上册数学课时作业

领导口才  点击:   2018-05-20

九年级上册数学课时作业篇一

九年级数学课时作业

九年级数学课时作业本

一、填空题

1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大.

2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.

3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天.

4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.

二、选择题

5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )

A. B. C. D.

6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )

A.8000条 B.4000条 C.2000条 D.1000条

三、解答题

7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:

摸球的次数n 100 150 200 500 800 1000

摸到白球的次数m 58 96 116 295 484 601

摸到白球的频率

0.58 0.64 0.58 0.59 0.605 0.601

(1)请估计:当n很大时,摸到白球的频率将会接近______;

(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;

(3)试估算口袋中黑、白两种颜色的球各有多少只?

(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.

8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.

综合、运用、诊断

一、填空题

9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.

10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.

二、解答题

11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.

12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下: 掷子次数 50次 150次 300次

石子落在⊙O内

(含⊙O上)的次数m 14 43 93

石子落在图形内的次数n 19 85 186

你能否求出封闭图形ABC的面积?试试看.{九年级上册数学课时作业}.

13.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?

拓广、探究、思考

14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.

15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:

(1)该国参战部队有220个班建制;

(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;

(3)敌国的士气不振.

因此,他向本国发回消息:“敌国已基本失去战斗力”.

你认为这名间谍的消息正确吗?

九年级上册数学课时作业篇二

数学九上课时作业本第9课时

第9课时 直线与圆的位置关系(1)

知识梳理{九年级上册数学课时作业}.

1.(1)直线与圆有 个公共点时,叫做直线与圆相交;

(2)直线与圆有 公共点时,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做

(3)直线与圆没有公共点时,叫做直线与圆

2.如果⊙O的半径为r,圆心O到直线L的距离为d,那么

(1)直线L与⊙O d<r;

(2) 直线L与⊙O d=r;

(3) 直线L与⊙O d>r.

课堂作业

1.已知圆的直径为10cm,圆心到直线L的距离为5cm,则直线l和这个圆有 个公共点。

2.如图,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm ,以点C为圆心,3cm 长为半径作圆,则⊙C与AB的位置关系是

3.已知⊙O的半径为8,圆心O到直线L的距离为4,则直线L与⊙O的位置关系是 ( )

A. 相切 B.相交 C.相离 D.无法确定

4.如图,在△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是 ( )

A. 相交 B.相切 C.相离 D.无法确定

5.如图,AB是半径为6cm的⊙O的弦,AB=6cm.以点O为圆心,3cm长为半径的圆与AB有怎样的位置关系?并说明理由。

课后作业

6.如图,在平面直角坐标系中,半径为2圆的圆心坐标为(3,-3),当该圆向上平移 个单位时,它与x轴相切。

7.已知⊙O的圆心O到直线L的距离为d,⊙O的半径为r,如果d、r是关于x的方程x4xm0的两个根,那么当直线L与⊙O相切时,m的值为 。

8.已知⊙O的半径为2,直线L上有一点P,且PO=2,则直线L与⊙O的位置关系是 ( )

A. 相切 B.相离 C.相离 或相切 D.相切或相交

9. 在平面直角坐标系中,以点(3,-5)为圆心,r 为半径的圆上有且仅有两点到x轴的距离等于1,则圆的半径r的取值范围是 ( )

A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6

10.如图,O为原点,点A的坐标为(4,3),⊙A的半径为2,过点A作直线L平行于x轴,交y轴于点B,点P在直线L上运动。

(1)当点P在⊙A上时,请直接写出它的坐标;

(2)若点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由。

y 2{九年级上册数学课时作业}.

11.在Rt△ABC中,∠C=90°,BC=4cm,AC=3cm,以点C为圆心,r为半径画⊙C。

(1)若直线AB与⊙C没有交点,求r的取值范围;

(2)若边AB与⊙C有两个交点,求r 的取值范围;

(3)若边AB与⊙C只有一个交点,求r 的取值范围。

12.如图,在平面直角坐标系中,以点O为圆心,5个单位长度为半径画圆。直线MN经过x轴上一动点P(m,0)且垂直于x轴,当点P在x轴上移动时,直线MN也随着平行移动。按下列条件求m的值或取值范围。

(1)⊙O上任何一点到直线MN的距离都不等于3;

(2)⊙O上有且只有一点到直线MN的距离等于3;

(3)⊙O上有且只有两点到直线MN的距离等于3;

(4)随着m的变化,⊙O上到直线MN的距离等于3的点个数还有哪些变化?请说明所有情形及对应的m的值或取值范围。

答案

知识梳理{九年级上册数学课时作业}.

1.(1)两 (2)唯一 切点 (3)相离

2.(1)相交 (2)相切 (3)相离

课堂作业

1.1 2.相交 3.B 4.A 5.相离 理由略

{九年级上册数学课时作业}.

课堂作业

6.1或5 7.4 8. D 9.D 10.(1)(2,3)或(6,3)

(2)相交 理由:连接OA、OP,作

PAO=AQ⊥OP,垂足为Q. ∵S△1188PAOBPOAQ,AQ.2,直线OP与⊙A相交. 221717

11.(1)0cm<r<2.4cm (2)2.4cm<r≤3cm (3)r=2.4cm或3cm≤r≤4cm

12.(1)当m<-8或m>8 时,⊙O上任何一点到直线MN的距离都不等于3

(2)当m=-8或m=8 时,⊙O上有且只有一点到直线MN的距离都等于3

{九年级上册数学课时作业}.

(3)当-8<m<-2或2<m<8时,⊙O上有且只有两点到直线MN的距离等于3

(4)当m=-2或m=2时,⊙O上有且只有三个点到直线MN的距离等于3;当-2<m<2时,⊙O上有且只有四个点到直线MN的距离等于3

九年级上册数学课时作业篇三

江苏版九年级数学上课时作业本答案与点拨

{九年级上册数学课时作业}.

九年级上册数学课时作业篇四

新人教版九年级数学上册练习册答案{九年级上册数学课时作业}.

九年级上册数学课时作业篇五

【最新】人教版九年级数学上册 第21章:一元二次方程(课时作业9)

新人教版九年级数学上册第21章:一元二次方程课时作业9

(A)一、基础夯实

1.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x,根据题意,得( )

A.5000(1+x2)=7200 B.5000(1+x)+5000(1+x)2=7200

C.5000(1+x)2=7200 D.5000+5000(1+x)+5000(1+x)2=7200

2.某药品原来每盒售价96元,由于两次降价,现在每盒54元,•则平均

每次降价的百分数为_______.

3.某农场的粮食产量,若两年内从25万公斤,增加到30.25万公斤,则平均每年的增长率为_______.

(B)二、巩固提高

4.某银行经过两次降息,使一年期存款的年利率由2.25% 降至1.98 % 平均每次降息的百分率是多少?(结果写成a﹪的形式,其中a后两位)

(C)三、拓展创新

5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,•厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率

等级:整洁 正确 日期: 月 日

师生交流: 用适当方法解方程:

(1)3(6x1)24 (2)(x1)22(x1)10

(3)t(2t1)3(12t) (4)

(5)x22x1

20 (6)2(x1)(x3)12 9(x1)2(2x5)2

九年级上册数学课时作业篇六

【最新】人教版九年级数学上册 第21章:一元二次方程(课时作业3)作业配方法

新人教版九年级数学上册第21章:一元二次方程课时作业3 班级 组 号 学生姓名 家长签名

(A)一、基础夯实

1.解下列方程

①x2810 ② 9x258

(B)二、巩固提高

2.解下列方程

① 3(x1)260 ② 5x290 2完善区

③16x28x13 ④ x210x257

(C)三、拓展创新

3.有一块边长为15米的正方形绿地,经规划,需扩大绿化面积,预计规划后的正方形面积将达到400平方米,这块绿地的边长增加了多少米?

师生交流: 等级: 整洁_________正确_________ 日期:____月____日

相关文章
推荐内容
上一篇:乔布斯名言英文
下一篇:丰都县2017年政府工作报告
Copyright 学习网 版权所有 All Rights Reserved